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1. Mathematical Model

Physical 

Problems

Mathematica

l Model

Solution

Identify control variables

Assumptions (empirical law)

(1) Modeling

(2) Types of solution

Exact Eq. Approx. Eq.

Exact Sol. ◎ ◎
Approx. Sol. ◎ ◎

Eq.Sol.



(3) Methods of Solution



(3) Method of Solution

A. Classical methods

They offer a high degree of insight, but the problems are 

difficult or impossible to solve  for anything but simple 

geometries and loadings.

B. Numerical methods

(I) Energy: Minimize an expression for the potential energy of the 

structure over the whole domain.

(II) Boundary element: Approximates functions satisfying the 

governing differential equations not the boundary 

conditions.

(III) Finite difference: Replaces governing differential equations 

and boundary conditions with algebraic finite difference 

equations.

(IV) Finite element: Approximates the behavior of an irregular, 

continuous structure under general loadings and constraints 

with an assembly of discrete elements.



2. Finite Element Method

(1) Definition

FEM is a numerical method for solving a system of 

governing equations over the domain of a 

continuous physical system, which is discretized 

into simple geometric shapes called finite element.

Continuous system

Time-independent PDE

Time-dependent PDE

Discrete system

Linear algebraic eq.

ODE



(2) Discretization

Modeling a body by dividing it into an equivalent 

system of finite elements interconnected at a finite 

number of points on each element called nodes.



3. Historical Background



Chronicle of Finite Element Method

Year Scholar Theory

1941 Hrennikoff Presented a solution of elasticity problem using one-dimensional elements.

1943 McHenry Same as above.

1943 Courant Introduced shape functions over triangular subregions to model the whole

region.

1947 Levy Developed the force (flexibility) method for structure problem.

1953 Levy Developed the displacement (stiffness) method for structure problem.

1954 Argyris & Kelsey Developed matrix structural analysis methods using energy principles.

1956 Turner, Clough,

Martin, Topp

Derived stiffness matrices for truss, beam and 2D plane stress elements. Direct

stiffness method.

1960 Clough Introduced the phrase finite element .

1960 Turner et. al Large deflection and thermal analysis.

1961 Melosh Developed plate bending element stiffness matrix.

1961 Martin Developed the tetrahedral stiffness matrix for 3D problems.

1962 Gallagher et al Material nonlinearity.



Chronicle of Finite Element Method

Year Scholar Theory

1963 Grafton, Strome Developed curved-shell bending element stiffness matrix.

1963 Melosh Applied variational formulation to solve nonstructural problems.

1965 Clough et. al 3D elements of axisymmetric solids.

1967 Zienkiewicz et. Published the first book on finite element.

1968 Zienkiewicz et. Visco-elasticity problems.

1969 Szabo & Lee Adapted weighted residual methods in structural analysis.

1972 Oden Book on nonlinear continua.

1976 Belytschko Large-displacement nonlinear dynamic behavior.

~1997 New element development, convergence studies, the developments of

supercomputers, the availability of powerful microcomputers, the development

of user-friendly general-purpose finite element software packages.



4. Analytical Processes of Finite Element Method

(1) Structural stress analysis problem

A. Conditions that solution must satisfy

a. Equilibrium

b. Compatibility

c. Constitutive law

d. Boundary conditions

Above conditions are used to generate a system of equations 

representing system behavior.

B. Approach

a. Force (flexibility) method: internal forces as unknowns.

b. Displacement (stiffness) method: nodal disp. As unknowns.

For computational purpose, the displacement method is more 

desirable because its formulation is simple.  A vast majority of 

general purpose FE softwares have incorporated the displacement

method for solving structural problems.



(2) Analysis procedures of linear static structural analysis

A. Build up geometric model

a. 1D problem

line

b. 2D problem

surface

c. 3D problem

solid



B. Construct the finite element model

a. Discretize and select the element types

(a) element type

1D line element

2D element

3D brick element

(b)  total number of element (mesh)

1D:

2D:

3D:



b. Select a shape function

1D line element: u=ax+b

c.  Define the compatibility and constitutive law

d. Form the element stiffness matrix and equations

(a) Direct equilibrium method

(b) Work or energy method

(c) Method of weight Residuals

e. Form the system equation

Assemble the element equations to obtain global system 

equation and introduce boundary conditions



C. Solve the system equations

a. elimination method

Gauss’s method (Nastran)

b. iteration method

Gauss Seidel’s method

Displacement field strain field stress field

D. Interpret the results (postprocessing)

a. deformation plot b. stress contour



5. Applications of Finite Element Method

Structural Problem Non-structural Problem

Stress Analysis

- truss & frame analysis

- stress concentrated problem

Buckling problem

Vibration Analysis

Impact Problem

Heat Transfer

Fluid Mechanics

Electric or Magnetic 

Potential



6. Computer Programs for Finite Element Method

ANSYS ◎ D ◎ ◎ D ◎ ◎ ◎

NASTRAN ◎ D ◎ ◎ D ◎ ◎

ABAQUS ◎ ◎ ◎ ◎ ◎

MARC ◎ ◎ ◎ ◎ ◎

LS-DYNA3D ◎

MSC/DYNA ◎

ADAMS/

DADS

◎

COSMOS ◎ D ◎ ◎ D ◎ ◎

MOLDFLOW ◎

C-FLOW ◎

PHOENICS ◎ ◎





Finite Element Method (FEM)

• A continuous function of a continuum (given 

domain ) having infinite degrees of freedom is 

replaced by a discrete model, approximated by a 

set of piecewise continuous functions having a 

finite degree of freedom.



General Example

• A  bar subjected to some 
excitations like applied force at 
one end. Let the field quantity  
flow through the body, which has 
been obtained by solving 
governing DE/PDE, In FEM the 
domain  is subdivided into sub 
domain and in each sub domain a 
piecewise continuous function is 
assumed.

f

x

f1

f2
f3

f4

f5 f6

x

f Subdomain e

Domain divided with subdomains
with degrees of freedom



General Steps of the FEM

• 1. Discretize  & Select the Element Types

• 2. Select a Displacement Function

• 3. Define the Strain/Displacement & Stress/Strain

• Relationships

• 4. Derive the Element Stiffness Matrix & Equations

• 5. Assemble the Element Equations to Obtain the Global

• & Introduce Boundary Conditions

• 6. Solve for the Unknown Degrees of Freedom

• 7. Solve for the Element Strains & Stresses

• 8. Interpret the Results



Discretize & Select the Element Types

• Divide the body into equivalent systems of finite elements 

with nodes and the appropriate element type

• Element Types:

– One-dimensional (Line) Element

– Two-dimensional Element

– Three-dimensional Element

– Axisymmetric Element



One Dimensional Element



Select a Displacement Function

• There will be a displacement function for each element



Pascal’s Triangle



Define Strain Displacement & Stress/Strain 

Relationships

• For one-dimensional; 

Deformation in the x-direction, 

strain e is related to the 

displacement u

 [B] – Matrix relating strain to 

nodal displacement

• Hooke’s Law is used for the 

stress/strain relationship

[ ] [ ]

du d[N]
{d} [B]{d}

dx dx

1
B 1     1

L

e   

 



sxEex To Stiffness Matrix



Derive the Element Stiffness Matrix & Equations

• Virtual work principle of a deformable body in equilibrium is 
subjected to arbitrary virtual displacement satisfying compatibility 
condition (admissible displacement), then the virtual work done by 
external loads will be equal to virtual strain energy of internal 
stresses.

 dUe is the element internal energy

 dWe is the element external energy

• Please view the integration sheet



Stiffness Matrix

• fe – Element Force

• ke – Element Stiffness Matrix

• de – Element Displacement

• E – Young Modulus

• A – Cross Section Area

• L - Length



Assemble Equations for Global Matrix & 

Introduce Boundary Conditions

• Combine each element stiffness matrix into one, 

which is known as the global matrix

• This is done by combining each [ke] into their 

proper location on the global matrix

{F} = [K]{D}

• Capital letters represent the same as the element 

stiffness matrix, but for global matrix



Solve for Unknown DOF’s

• Using the global matrix with the boundary conditions, we can 

now eliminate some variables and solve for the unknowns, i.e. 

displacements, end forces



Solve for Element Strains & Stresses

Interpret Results

• Solve for the stress using the equation below

• To interpret the results use the FBD with your found 

values or use the computer program Algor



FEM Steps (Displacement Method)

• Discretize into finite elements, Identify nodes & 
elements

• Develop element stiffness matrices [ke] for all 
elements

• Assemble element stiffness matrices to get the 
global stiffness matrix

• Apply kinematic boundary conditions

• Solve for displacements

• Finally solve for element forces and stresses by 
picking proper rows



Example





• We combine the two stiffness matrices into the global 

matrix.





• Now that the displacement at u2 has been obtained, the end forces and 
stress values can be obtained by reverting back to the individual element 
stiffness matrices

• For the stress, you only need to look at the individual node of the stifness 
equation

Reactions



Element Forces



Element Stresses



Final Notes

• For this case, the calculated stresses in elements 1 

& 2 are exact within the linear theory for 1-D bar 

structures. Smaller finite elements will not help

• For tapered bars, averaged values of the cross-

sectional areas should be used for the elements.

• The displacements must be found first to find the 

stresses, since we are using the displacement 

based FEM



Assignment

• Write the displacement 

functions for the 

following elements:

• Analyze the bar shown 

below for:

– (a) Displacement at B

– (b) End Forces

– (c) Average Stresses in 

bar AB & BC



Need for Computational Methods

• Solutions Using Either Strength of  Materials or Theory of 

Elasticity Are Normally Accomplished for Regions and 

Loadings With Relatively Simple Geometry

• Many Applicaitons Involve Cases with Complex Shape, 

Boundary Conditions and Material Behavior

• Therefore a Gap Exists Between What Is Needed in 

Applications and What Can Be Solved by Analytical Closed-

form Methods

• This Has Lead to the Development of Several 

Numerical/Computational Schemes Including: Finite 

Difference, Finite Element and Boundary Element Methods



Introduction to Finite Element Analysis

The finite element method is a computational scheme to solve field problems in  

engineering and science.  The technique has very wide application, and has been used on 

problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations, 

electrical and magnetic fields, etc.  The fundamental concept involves dividing the body 

under study into a finite number of pieces (subdomains) called elements (see Figure).  

Particular assumptions are then made on the variation of the unknown dependent 

variable(s) across each element using so-called interpolation or approximation functions.  

This approximated variation is quantified in terms of solution values at special element 

locations called nodes. Through this discretization process, the method sets up an 

algebraic system of equations for unknown nodal values which approximate the 

continuous solution.  Because element size, shape and approximating scheme can be 

varied to suit the problem, the method can accurately simulate solutions to problems of 

complex geometry and loading and thus this technique has become a very useful and 

practical tool.



Advantages of Finite Element Analysis

- Models Bodies of Complex Shape

- Can Handle General Loading/Boundary Conditions

- Models Bodies Composed of Composite and Multiphase Materials

- Model is Easily Refined for Improved Accuracy by Varying 

Element Size and Type (Approximation Scheme)

- Time Dependent and Dynamic Effects Can Be Included

- Can Handle a Variety Nonlinear Effects Including Material 

Behavior, Large Deformations, Boundary Conditions, Etc. 



Basic Concept of the Finite Element Method

Any continuous solution field such as stress, displacement, 

temperature, pressure, etc. can be approximated by a 

discrete model composed of a set of piecewise continuous 

functions defined over a finite number of subdomains.

Exact Analytical Solution

x

T

Approximate Piecewise 

Linear Solution

x

T

One-Dimensional Temperature Distribution



Two-Dimensional Discretization

-1
-0.5

0
0.5

1
1.5

2
2.5

3

1

1.5

2

2.5

3

3.5

4
-3

-2

-1

0

1

2

xy

u(x,y)

Approximate Piecewise 

Linear Representation



Discretization Concepts

x

T

Exact Temperature Distribution, T(x)

Finite Element Discretization

Linear Interpolation Model
        (Four Elements)

Quadratic Interpolation Model
             (Two Elements)

T1

T2 T2
T3 T3

T4 T4

T5

T1

T2

T3

T4 T5

Piecewise Linear Approximation

T

x

T1

T2

T3 T3

T4 T5

T

T1

T2

T3
T4 T5

Piecewise Quadratic Approximation

x

Temperature Continuous but with 
Discontinuous Temperature Gradients

Temperature and Temperature Gradients
Continuous



Common Types of Elements

One-Dimensional Elements

Line

Rods, Beams, Trusses, Frames

Two-Dimensional Elements

Triangular, Quadrilateral

Plates, Shells, 2-D Continua

Three-Dimensional Elements

Tetrahedral, Rectangular Prism (Brick)

3-D Continua



Discretization Examples

One-Dimensional 

Frame Elements

Two-Dimensional 

Triangular Elements

Three-Dimensional 

Brick Elements



Basic Steps in the Finite Element Method

Time Independent Problems

- Domain Discretization

- Select Element Type (Shape and Approximation)

- Derive Element Equations (Variational and Energy Methods)

- Assemble Element Equations to Form Global System

[K]{U} = {F}

[K] = Stiffness or Property Matrix

{U} = Nodal Displacement Vector

{F} = Nodal Force Vector

- Incorporate Boundary and Initial Conditions

- Solve Assembled System of Equations for Unknown Nodal         

Displacements and Secondary Unknowns of Stress and Strain Values



Common Sources of Error in FEA

• Domain Approximation

• Element Interpolation/Approximation

• Numerical Integration Errors

(Including Spatial and Time Integration)

• Computer Errors (Round-Off, Etc., )



Measures of Accuracy in FEA

Accuracy

Error = |(Exact Solution)-(FEM Solution)|

Convergence

Limit of Error as: 

Number of Elements (h-convergence) 

or

Approximation Order (p-convergence) 

Increases

Ideally, Error  0 as Number of Elements or 

Approximation Order  



Two-Dimensional Discretization Refinement 

(Discretization with 228 Elements)

(Discretization with 912 Elements)

(Triangular Element)

(Node)









One Dimensional Examples

Static Case

1 2

u1 u2

Bar Element

Uniaxial Deformation of Bars

Using Strength of Materials Theory

Beam Element

Deflection of Elastic Beams

Using Euler-Bernouli Theory
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Two Dimensional Examples
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Triangular Element
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Development of Finite Element Equation
• The Finite Element Equation Must Incorporate the Appropriate Physics 

of the Problem

• For Problems in Structural Solid Mechanics, the Appropriate Physics 

Comes from Either Strength of Materials or Theory of Elasticity

• FEM Equations are Commonly Developed Using Direct, Variational-

Virtual Work or Weighted Residual Methods

Variational-Virtual Work Method

Based on the concept of virtual displacements, leads to relations between internal and 

external virtual work and to minimization of system potential energy for equilibrium

Weighted Residual Method

Starting with the governing differential equation, special mathematical operations 

develop the “weak form” that can be incorporated into a FEM equation.  This 

method is particularly suited for problems that have no variational statement.   For 

stress analysis problems, a Ritz-Galerkin WRM will yield a result identical to that 

found by variational methods.  

Direct Method 

Based on physical reasoning and limited to simple cases, this method is 

worth studying because it enhances physical understanding of the process



Simple Element Equation Example

Direct Stiffness Derivation

1 2
k

u1 u2

F1 F2

}{}]{[

rm Matrix Foinor                 

  2 Nodeat  mEquilibriu

  1 Nodeat  mEquilibriu

2

1

2

1

212

211

FuK

F

F

u

u

kk

kk

kukuF

kukuF





































Stiffness Matrix
Nodal Force Vector



Common Approximation Schemes

One-Dimensional Examples

Linear Quadratic Cubic

Polynomial Approximation

Most often polynomials are used to construct approximation 

functions for each element.  Depending on the order of 

approximation, different numbers of element parameters are 

needed to construct the appropriate function. 

Special Approximation

For some cases (e.g. infinite elements, crack or other singular 

elements) the approximation function is chosen to have special 

properties as determined from theoretical considerations 



One-Dimensional Bar Element
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One-Dimensional Bar Element

A = Cross-sectional Area

E = Elastic Modulus

f(x) = Distributed Loading
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For One-Dimensional Case
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Linear Approximation Scheme
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Element Equation
Linear Approximation Scheme, Constant Properties
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Quadratic Approximation Scheme
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Lagrange Interpolation Functions
Using Natural or Normalized Coordinates
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Simple Example
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Simple Example Continued
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One-Dimensional Beam Element
Deflection of an Elastic Beam
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Beam Approximation Functions
To approximate deflection and slope at each 

node requires approximation of the form
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Beam Element Equation

 
L

T
L

dVfwQuQuQuQdxEI
0

44332211
0

][}{][][ NdBB
T



























4

3

2

1

}{

u

u

u

u

d ][
][

][ 4321

dx

d

dx

d

dx

d

dx

d

dx

d ffff


N
B



























 
22

22

30

233

3636

323

3636

2
][][][

LLLL

LL

LLLL

LL

L

EI
dxEI

L

BBK
T








































































































L

LfL

Q

Q

Q

Q

u

u

u

u

LLLL

LL

LLLL

LL

L

EI

6

6

12

233

3636

323

3636

2

4

3

2

1

4

3

2

1

22

22

3




















































f

f

f

f

 

L

LfL
dxfdxf

LL
T

6

6

12
][

0

4

3

2

1

0
N



FEA Beam Problem
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FEA Beam Problem
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Special Features of Beam FEA

Analytical Solution Gives

Cubic Deflection Curve

Analytical Solution Gives

Quartic Deflection Curve

FEA Using Hermit Cubic Interpolation 

Will Yield Results That Match Exactly 

With Cubic Analytical Solutions



Truss Element
Generalization of Bar Element With Arbitrary Orientation
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k=AE/L

qq cos,sin cs



Frame Element
Generalization of Bar and Beam Element with Arbitrary Orientation
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