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(3) Methods of Solution

Exact Solution

__ (lassical method

Approximate Solution
Engineering Analysis  _ __ Energy

__ Boundary element

Numerical method

" Finite Difference
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(3) Method of Solution

A. Classical methods
They offer a high degree of insight, but the problems are
difficult or impossible to solve for anything but simple
geometries and loadings.

B. Numerical methods

(1) Energy: Minimize an expression for the potential energy of the
structure over the whole domain.

(1) Boundary element: Approximates functions satisfying the
governing differential equations not the boundary
conditions.

(I11) Finite difference: Replaces governing differential equations
and boundary conditions with algebraic finite difference
equations.

(IV) Finite element: Approximates the behavior of an irregular,
continuous structure under general loadings and constraints
with an assembly of discrete elements.



2. Finite Element Method
(1) Definition

FEM is a numerical method for solving a system of
governing equations over the domain of a
continuous physical system, which is discretized
Into simple geometric shapes called finite element.

S>>




(2) Discretization

Modeling a body by dividing it into an equivalent
system of finite elements interconnected at a finite
number of points on each element called nodes.
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3. Historical Background

1940 —» +« Structural engineering

¢ *  One dimensional element
1950 —» + Direct stiffness method

# « two dimensional elements
1960 —» + “Finite element” mtroduced
1970 —» + three dimensional elements

+ Large deflection

» Thermal analysis

1976 — Large deformation nonlinear dynamics

Present New ElElIlEIltS.. New softwares.



Chronicle of Finite Element Method

Year Scholar Theory
1941 Hrennikoff Presented a solution of elasticity problem using one-dimensional elements.
1943 McHenry Same as above.
1943 Courant Introduced shape functions over triangular subregions to model the whole
region.
1947 Levy Developed the force (flexibility) method for structure problem.
1953 Levy Developed the displacement (stiffness) method for structure problem.
1954 Argyris & Kelsey Developed matrix structural analysis methods using energy principles.
1956 Turner,  Clough,  Derived stiffness matrices for truss, beam and 2D plane stress elements. Direct
Martin, Topp stiffness method.
1960 Clough Introduced the phrase finite element .
1960 Turner et. al Large deflection and thermal analysis.
1961 Melosh Developed plate bending element stiffness matrix.
1961 Martin Developed the tetrahedral stiffness matrix for 3D problems.

1962 Gallagher et al Material nonlinearity.



Chronicle of Finite Element Method

Year Scholar Theory
1963 Grafton, Strome Developed curved-shell bending element stiffness matrix.
1963 Melosh Applied variational formulation to solve nonstructural problems.
1965 Clough et. al 3D elements of axisymmetric solids.
1967 Zienkiewicz et. Published the first book on finite element.
1968 Zienkiewicz et. Visco-elasticity problems.
1969 Szabo & Lee Adapted weighted residual methods in structural analysis.
1972 Oden Book on nonlinear continua.
1976 Belytschko Large-displacement nonlinear dynamic behavior.
~1997 New element development, convergence studies, the developments of

supercomputers, the availability of powerful microcomputers, the development
of user-friendly general-purpose finite element software packages.



4. Analytical Processes of Finite Element Method
(1) Structural stress analysis problem

A. Conditions that solution must satisfy

a. Equilibrium

b. Compatibility

c. Constitutive law

d. Boundary conditions
Above conditions are used to generate a system of equations
representing system behavior.

B. Approach

a. Force (flexibility) method: internal forces as unknowns.

b. Displacement (stiffness) method: nodal disp. As unknowns.
For computational purpose, the displacement method is more
desirable because its formulation is simple. A vast majority of
general purpose FE softwares have incorporated the displacement
method for solving structural problems.



(2) Analysis procedures of linear static structural analysis
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A. Build up geometric model

a. 1D problem

line

b. 2D problem

surface |

c. 3D problem
solid | 0




B. Construct the finite element model
a. Discretize and select the element types

(a) element type

1D line element

2D element

3D brick element

(b) total number of element (mesh)
1D:
2D:
3D:




b. Select a shape function

1D line element; u=ax+b

c. Define the compatibility and constitutive law

1D @ ex = % o=Feg [FETILEE
adx

d. Form the element stiffness matrix and equations

(a) Direct equilibrium method

(b) Work or energy method

(c) Method of weight Residuals
(K] dy = 1F}°

e. Form the system equation

Assemble the element equations to obtain global system
equation and introduce boundary conditions

K Jay = (F}



C. Solve the system equations
a. elimination method
Gauss’s method (Nastran)
b. iteration method

Gauss Seidel’s method

D. Interpret the results (postprocessing)

a. deformation plot
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b.

stress contour




5. Applications of Finite Element Method

Structural Problem

Non-structural Problem

Stress Analysis

- truss & frame analysis

- stress concentrated problem
Buckling problem

Vibration Analysis

Impact Problem

Heat Transfer
Fluid Mechanics

Electric or Magnetic
Potential




6. Computer Programs for Finite Element Method
ANSYS © A © © A © © ©
NASTRAN © A © © A © ©
ABAQUS © © © © ©
MARC © © © © ©
LS-DYNA3D ©
MSC/DYNA ©
ADAMS/ ©
DADS
COSMOS © A © © A © ©
MOLDFLOW ©
C-FLOW ©
PHOENICS © ©







Finite Element Method (FEM)

» A continuous function of a continuum (given
domain Q) having infinite degrees of freedom is
replaced by a discrete model, approximated by a
set of piecewise continuous functions having a
finite degree of freedom.



General Example

A bar subjected to some
excitations like applied force at
one end. Let the field quantity
flow through the body, which has
been obtained by solving
governing DE/PDE, In FEM the
domain Q is subdivided into sub
domain and in each sub domain a
piecewise continuous function is
assumed.
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General Steps of the FEM

. Discretize & Select the Element Types
. Select a Displacement Function

Define the Strain/Displacement & Stress/Strain
Relationships
Derive the Element Stiffness Matrix & Equations

. Assemble the Element Equations to Obtain the Global

& Introduce Boundary Conditions

. Solve for the Unknown Degrees of Freedom
. Solve for the Element Strains & Stresses
. Interpret the Results



Discretize & Select the Element Types

 Divide the body into equivalent systems of finite elements
with nodes and the appropriate element type
« Element Types:
— One-dimensional (Line) Element
— Two-dimensional Element
— Three-dimensional Element
— Axisymmetric Element



One Dimensional Element
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Select a Displacement Function

« There will be a displacement function for each element

u, u.
b ‘
ie —~
]
U u
= = LU
1 o 0 2
i k
u, u.
— —
0,(1° C"J; 6.
<

u(x) = o+ osX

u(x) = o+ oX + ax?

U= {+aoX+a3X +0ax

U(X,y) = o] + drX+ d3-y

V(X.¥) = 0y + 05X+ dgy



Pascal’s Triangle

Constant

Linear

Luadratic

Cubic

}"4 —  Quartic



Define Strain Displacement & Stress/Strain

Relationships
* For one-dimensional;
Deformation in the x-direction, s .= %
strain ¢ is related to the dx

displacement v

1 [B] — Matrix relating strain to
nodal displacement

» Hooke’s Law 1s used for the

. . . - E-
stress/strain relationship Ox= Sy



c,=Eg, To Stiffness Matrix

o, = E=y
Oy = — E = Youngs Modulus By = Ij'—u,
i ﬂ i d;.:
P=aESy
dx

When viewing from ol to uZ M
d ol Uz
—u=u -
When viewing fram u2 to ol . .
d
—u=u -1 Ol Uz

dx

When combining the two together for the ane element you obtain the stiffness matrix



Derive the Element Stiffness Matrix & Equations

 Virtual work principle of a deformable body in equilibrium is
subjected to arbitrary virtual displacement satisfying compatibility
condition (admissible displacement), then the virtual work done by
external loads will be equal to virtual strain energy of internal
stresses.

1 dU¢ is the element internal energy
1 dWEe Is the element external energy
 Please view the integration sheet

OoU " = oW*



Stiffness Matrix

f, — Element Force

k, — Element Stiffness Matrix 1= [1:,_6 ] {dﬁ }

de — Element Displacement

E — Young Modulus

A — Cross Section Area i “ uzﬂ

L - Length EAl 1 —=1|1




Assemble Equations for Global Matrix &
Introduce Boundary Conditions

« Combine each element stiffness matrix into one,
which Is known as the global matrix

 This is done by combining each [k,] into their
proper location on the global matrix

[K,]= [[B]T[D][B]dv
{F} = [KKD}

 Capital letters represent the same as the element
stiffness matrix, but for global matrix



Solve for Unknown DOF’s

 Using the global matrix with the boundary conditions, we can
now eliminate some variables and solve for the unknowns, I.e.
displacements, end forces

."’1:.'1“'.
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Solve for Element Strains & Stresses
Interpret Results

 Solve for the stress using the equation below

 To Interpret the results use the FBD with your found
values or use the computer program Algor

ul
o =Ee =EBu, =E[-1/L 1/L]
i,



FEM Steps (Displacement Method)

Discretize into finite elements, Identify nodes &
elements

Develop element stiffness matrices [k.] for all
elements

Assemble element stiffness matrices to get the
global stiffness matrix

Apply kinematic boundary conditions
Solve for displacements

Finally solve for element forces and stresses by
picking proper rows



Example

Problem: Find the stresses in the two bar assembly which is
loaded with force P, and constrained at the two ends,
as shown in the figure.

Solution: Use two 1-D bar elements.
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k=2EA1 -1
'L 1-=1 1



* \We combine the two stiffness matrices into the global
matrix.

[K ] = 2 3 -1Ku,p=<F




Load and boundary conditions (BC) are,
u, =u, =0, F,=P

FE equation becomes,

Deleting the 1% row and column, and the 3™ row and column,
we obtain,

7[3]{“2} ={P}

Thws, PL

A,
~

L]
I
-

== EEE L 0



« Now that the displacement at u, has been obtained, the end forces and
stress values can be obtained by reverting back to the individual element
stiffness matrices

« For the stress, you only need to look at the individual node of the stifness
equation

Reactions 0
.;Fl}:ﬂ[j ) {:}]if;l _?:_£
L 3AE || 3
0
{Fﬂ:ﬂ[“ -1 1]&;;1 L= -
T L 3AE 3




Element Forces

Element 1

thl | 2AE |: { _1} Jrlll |
|5_ f, | L. | -1 1 | u, |

»AEl 1 -17 pL |{}| _JH—E p/ 3|
L |-1 1|3AE|1] |2p/3 |

Element 2

If|_AE[ 1 -1][u,|
| £, | L -1 1][us]

:AE[I _1} . |1| Jﬂp-"';-?? |




Element Stresses

Stress in element 1 is
U
= Fe, = EB,u, =E[—1/L I/L]{ '}
u,

-u, E( PL F
=E -0
I3 L(3EA ) 34 (member is in tensior

Similarly, stress in element 2 is

U,
o,=Ee,=EB,u,=E[-1/L 1/L] 3
3

=Eu3——u2=E(0 PL) P
L L 3EA 34

which indicates that bar 2 is in compression.




Final Notes

 For this case, the calculated stresses in elements 1
& 2 are exact within the linear theory for 1-D bar
structures. Smaller finite elements will not help

 For tapered bars, averaged values of the cross-
sectional areas should be used for the elements.

 The displacements must be found first to find the
stresses, since we are using the displacement
based FEM



Assignment

* Write the displacement
functions for the
following elements:

« Analyze the bar shown
below for:
— (a) Displacement at B
— (b) End Forces

— (c) Average Stresses in
bar AB & BC

(1)
¥, ) O 0
— —_—

1 2 3 4
One dimensional

Six node triangular{2d)

A B C
\ Section Area (mm*2)
I A 30
P10 kN E, fg
/
. E = 200 GPa
L




Need for Computational Methods

* Solutions Using Either Strength of Materials or Theory of
Elasticity Are Normally Accomplished for Regions and
Loadings With Relatively Simple Geometry

« Many Applicaitons Involve Cases with Complex Shape,
Boundary Conditions and Material Behavior

« Therefore a Gap Exists Between What Is Needed in
Applications and What Can Be Solved by Analytical Closed-
form Methods

 This Has Lead to the Development of Several
Numerical/Computational Schemes Including: Finite
Difference, Finite Element and Boundary Element Methods



Introduction to Finite Element Analysis

The finite element method is a computational scheme to solve field problems in
engineering and science. The technique has very wide application, and has been used on
problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations,
electrical and magnetic fields, etc. The fundamental concept involves dividing the body
under study into a finite number of pieces (subdomains) called elements (see Figure).
Particular assumptions are then made on the variation of the unknown dependent
variable(s) across each element using so-called interpolation or approximation functions.
This approximated variation is quantified in terms of solution values at special element
locations called nodes. Through this discretization process, the method sets up an
algebraic system of equations for unknown nodal values which approximate the
continuous solution. Because element size, shape and approximating scheme can be
varied to suit the problem, the method can accurately simulate solutions to problems of
complex geometry and loading and thus this technique has become a very useful and
practical tool.

10 15 0 25 3 kY]

finite element

node




Advantages of Finite Element Analysis

- Models Bodies of Complex Shape

Can Handle General Loading/Boundary Conditions

Models Bodies Composed of Composite and Multiphase Materials
Model is Easily Refined for Improved Accuracy by Varying
Element Size and Type (Approximation Scheme)

Time Dependent and Dynamic Effects Can Be Included

Can Handle a Variety Nonlinear Effects Including Material
Behavior, Large Deformations, Boundary Conditions, Etc.



Basic Concept of the Finite Element Method

Any continuous solution field such as stress, displacement,

temperature, pressure, etc. can be approximated by a

discrete model composed of a set of piecewise continuous

functions defined over a finite number of subdomains.

One-Dimensional Temperature Distribution

Exact Analytical Solution

T

A

A

Approximate Piecewise
Linear Solution

v

v



Two-Dimensional Discretization

u(xy)

Approximate Piecewise
Linear Representation



Discretization Concepts

AT

Exact Temperature Distribution, T(X)

Finite Element Discretization

Linear Interpolation Model
T, (Four Elements)
2

2 T3 T3

l.\-ré;4\.'|'5

| [

Piecewise Linear Approximation

Temperature Continuous but with
Discontinuous Temperature Gradients

Quadratic Interpolation Model
T, (Two Elements)

T,
T3 T3

Piecewise Quadratic Approximation

Temperature and Temperature Gradients
Continuous



Common Types of Elements

Two-Dimensional Elements

One-Dimensional Elements Triangular, Quadrilateral
Line Plates, Shells, 2-D Continua

Rods, Beams, Trusses, Frames

Three-Dimensional Elements
Tetrahedral, Rectangular Prism (Brick)
3-D Continua

[
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Brick Elements

Two-Dimensional
Triangular Elements

One-Dimensional

Frame Elements



Basic Steps in the Finite Element Method
Ime Independent Problems

Domain Discretization

Select Element Type (Shape and Approximation)

Derive Element Equations (Variational and Energy Methods)
Assemble Element Equations to Form Global System

[KRU} = {F}

[K] = Stiffness or Property Matrix
{U} = Nodal Displacement Vector
{F} = Nodal Force Vector

- Incorporate Boundary and Initial Conditions
- Solve Assembled System of Equations for Unknown Nodal
Displacements and Secondary Unknowns of Stress and Strain Values



Common Sources of Error in FEA

« Domain Approximation

« Element Interpolation/Approximation

* Numerical Integration Errors
(Including Spatial and Time Integration)

« Computer Errors (Round-Off, Etc., )



Measures of Accuracy in FEA

Accuracy

Error = |(Exact Solution)-(FEM Solution)|

Convergence

Limit of Error as:

Number of Elements (h-convergence)
or
Approximation Order (p-convergence)

INncreases

Ideally, Error — 0 as Number of Elements or
Approximation Order - o



Two-Dimensional Discretization Refinement

(Node)

(Discretization with 228 Elements)

(Triangular Element)

(Discretization with 912 Elements)



One Dimensional Examples
Static Case

Bar Element

Uniaxial Deformation of Bars

Using Strength of Materials Theory

U U,

> e ° >
1 2

Differential Equation :

—i(au)+cu—q:0
X

Boundary Condtions Specification:

du
u,a—
dx

Beam Element

Deflection of Elastic Beams
Using Euler-Bernouli Theory

[ ]

° ° 6,
1 2

Differential Equation :
d* , d*w

— b = f(x

dx® ( dx2) %)

Boundary Condtions Specification:

dw d*w d , d*w

2 _(b 2 )

dx dx® dx  dx




Two Dimensional Examples

Trianqular Element

Scalar-Valued, Two-Dimensional

Field Problems
b

¢,

¢

Example Differential Equation :

@ 9 _
ox> +8y2 fxy)

Boundary Condtions Specification:

p S0 _00, 00
dn ox oy

Trianqular Element

Vector/Tensor-Valued, Two-

Dimensional Field Problems
V3

1 U,
Elasticity Field Equations in Terms of Displacements

IVATES E g(au avj +F, =0

2(L-v)ox{ox oy

we E 2B ) ¢
2(1-v) oy | ox 8y

Boundary Conditons

11 ClZ_ +C66 5_U+@ ny
oy OX

oV ou ov
T,=C; (8y axj [C12&+C225jny




Development of Finite Element Equation

® The Finite Element Equation Must Incorporate the Appropriate Physics
of the Problem

 For Problems in Structural Solid Mechanics, the Appropriate Physics
Comes from Either Strength of Materials or Theory of Elasticity

* FEM Equations are Commonly Developed Using Direct, Variational-
Virtual Work or Weighted Residual Methods

Direct Method

Based on physical reasoning and limited to simple cases, this method is
worth studying because it enhances physical understanding of the process

Variational-Virtual Work Method

Based on the concept of virtual displacements, leads to relations between internal and
external virtual work and to minimization of system potential energy for equilibrium

Weighted Residual Method

Starting with the governing differential equation, special mathematical operations
develop the “weak form” that can be incorporated into a FEM equation. This
method is particularly suited for problems that have no variational statement. For
stress analysis problems, a Ritz-Galerkin WRM will yield a result identical to that
found by variational methods.




Simple Element Equation Example
Direct Stiffness Derivation

u,

—————

I“_l
1 2

Equilibrium at Nodel = F, =ku, —ku,
Equilibriumat Node2 = F, = —ku, +Kku,

or in Matrix Form

k —k||u, F
{_ k- k Huz} i {Fz}
Stiffness I\/Iatrix<
[KI{u} =1{F}



Common Approximation Schemes
One-Dimensional Examples

Polynomial Approximation

Most often polynomials are used to construct approximation
functions for each element. Depending on the order of
approximation, different numbers of element parameters are
needed to construct the appropriate function.

Linear Quadratic Cubic

Special Approximation

For some cases (e.g. infinite elements, crack or other singular
elements) the approximation function is chosen to have special
properties as determined from theoretical considerations



One-Dimensional Bar Element

Approximation:u =), (x)u, =[NKd}

eldu_d AN
Strain: e = v Zk:dx v, (XU, = i {d}=[B}{d}

Stress- Strain Law : o = Ee = E[B]{d}
| odedV = Pu, + P, + | foudv =
ody jOL AIB]" E[BIdx{d} = {od}" {E } L {odY jOL AINT fdx =

jOL AIB]" E[Bldx{d} = {P}+ jOL AINT fax
v | [K]= [ A[B]" E[BJdx = StiffnessMatrix

[K]{d}={F} {F}= {I: } + IOL AINT" fdx = Loading Vector

J

u.
{d}= {ul } = Nodal Displacement Vector



One-Dimensional Bar Element

Axial Deformation of an Elastic Bar

f(x) = Distributed Loading A = Cross-sectional Area

E = Elastic Modulus
Typical Bar Element

. U; —u; du.
Pi:—AEdu' :l—> O . J=Pj=—AE—J
dx (i) L () dx

(Two Degrees of Freedom)

Virtual Strain Energy = Virtual Work Done by Surface and Body Forces
| oydedv = [ T suds+] Faudv
% S, %

For One-Dimensional Case

| odedV = Pu, +Pu; + [ foudv
Q Q



Linear Approximation Scheme

— U, —u j
® ®
(1) L (2)

u(x)
Approximak Elastic Displacement /

> X (local coordinate system)

U, =2a,
u=a, +a,x =
u,=a, +a,L o o -
u, — U, ( x) (xj (1) (2)
> U=U+—"——=X=|1-—|u +|— U,
L L L
=y, (X)U; +y, (XU, \lVl(X) WZ(XZ"T
U1 X X \\\ //,’
u =y, Wz]{uz} = [1 T '—H } [NJ{d} W 1
[N ] =Approximation Function Matrix IRt \\\ l
{d} = Nodal Displacement Vector ('1/) ('2) X

v, (x) — Lagrange Interpolation Functions



Element Equation
Linear Approximation Scheme, Constant Properties

L L L -1 1

( X\
P P -- P 1
Fr={ b [PAINT fax=] b ar, [ Llax= o Alb
p (") P : p(T2 11

X
\ L J

N
[K]= [, ALBI" E[Blix= AE[B]'[B][dx= AE{ - {‘1 E}L:E{l _1}
L

u
{d}= {ul} = Nodal Displacement Vector

2

AE[-1 17(u] [R] AfL[L
e P R




Quadratic Approximation Scheme

§—> u, §—> u, \—» u,
e e P
(1) (2) (3)

—

Approximat Elastic Displacement u(x)
u, =a |

L2
U=a, +a,Xx+ax’ = U, =ayta, o+

> X

¢ ® & > X
u, =a, +a,L+a,l’ (1) (2) 3)
U =y, (U, + v, (U, + v, (U,
y V(%) "
1 X \ /7 i / \.|13 X
u=lv, w, wFUr=[Nd} ¥i() ‘S I K
Ug N 1 )
/7 N / \\
Element Equation roN LT
(= b 34 = > X
N O 7@ e
—1| -8 16 —-8KU,r=4F,¢
3L
1 -8 7 ]|u; F5




Lagrange Interpolation Functions
Using Natural or Normalized Coordinates

(1i=]
\Vi(ij)—{o’iij
a W1=%(1—§)
@ 9
(1) ~1<E<1 (2) v :5(1+§)
22
- Leaog
r’a Y, = 5
o o ,=(1-8)Q
0 2 3) y, =(1-&)[1+&)

vy =2 E0+Y

9 1 1
Vi =15 -8G+RGE-0)

27 1
. V.=l -9+ -
o ® ® o 27 1
(1) (2) (3) (4) Vs =16 (1-8)A+¢) (g +&)
__ 91 1
WV, = 16(3+§)(3 E)L+)
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Simple Example

v

@ @ Take Zero Distributed Loading
® ® J f=0
(1) (2) (3)
Global Equation Element1 Global Equation Element 2
[ 1 -1 oy, R 0 0 0]y, 0
AR, 1 0 U, ={P" % 0 1 -1KU,r=<P?
0 0 0}lUu, 0 10 -1 1|U, P
Assembled Global System Equation
AE,  _AE o |
L, L U, P P
_AE AR AE, AR, u,t=lpwip@l_Jp
Ll Ll L2 L2 U P(Z) P
o _AE  AE, % 2 :
L L2 L2 _




Simple Example Continued

e
A2,E2,L2

(1)

Boundary Conditions

U, =0
P =P

Pz(l) + p1(2) =0

(AE | AE, _AE,

L L, L,
AE, AE,
L, L,

Solving = U, =

— @
(2) (3)
Reduced Global System Equation
AE, : . AE, 0 |
Lo b 0
_AE AR AR, AR,
: L1 Lz I—2 U2
o | _AE  AE, |V
! L2 L2 _
For Uniform ‘ E{ 2 _1}{
Properties A E, L L[-1 1
i’u :zﬂ’p(l):_p
AE " °  AE 7

U,
U,

0
P



One-Dimensional Beam Element

Deflection of an Elastic Beam

L 1 11

T/ f(x) f( Distributed Loading

| = Section Moment of Inertia
E = Elastic Modulus

H 2 2
Typical Beam Element d [EI d w} o, =(E| d wJ
1

W W le_ dx?
/1}‘1 Q /10 );ZW

0 24,0 dx
® ® d d*w
(b, ot rfo
M, 2
Vi Vv, u=w , u,

o __Ow
(Four Degrees of Freedom) ' dx

U =W, , U, =0, =
L dx

Virtual Strain Energy = Virtual Work Done by Surface and Body Forces
Lgséiedv =Q,u, +Q,u, +Q,u; +Q,w, + _[Q fowdV =
L L
El [ [BT'[BIX{d} = Quu; +Q,u, + Qg + Quw, + [ fIN]"dV



Beam Approximation Functions

To approximate deflection and slope at each
node requires approximation of the form

W(X) =C, +C,X +CX* +C,X°

Evaluating deflection and slope at each node
allows the determination of c; thus leading to

W(X) - (I)l(x)ul + (I)z(x)uz + (I)s(x)us + (|)4(X)U4 ,
where ¢, are the Hermite Cubic Approximation Functions

ool () o)

1.2 0.2
1.01
4 3 0.1 b
0.8
0.6+ 0.0
0.4
~0.11 ¢
0.2
0.0 v : —-0.2 ‘ r T .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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Beam Element Equation

El [ [BI" [BIX{d} = Qu, +QuU, + Quu; + Quw, + [ F[N] aV

m
u, _d[N] _
{d}=<u3> [B]= i =

281

6 -3L -6 -3L]

[K]-E1 [ [BT [Blx= 25| 21 3L

L2

°| -6 3L 6 3L

6 -3L -6 -3L]
-3L 21* 3L L
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-3L L* 3L 212
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dx dx dx dx
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FEA Beam Problem

l l l l l f Uniform EI
«—— g >i< b —»‘
® @ @ @ ®
(1) (2) (3)

Elementl
' 6/a® -3/a> -6/a° -3/a®> 0 0][U, 6) [QW
-3/a* 2/a  3/a® la 0 0||U, -a @
SE| -6/a° 3/a® 6/a’ 3/a® 0 0||Us|_ fa)6 .\ @
-3/a* 1l/a  3/a® 2/a 0 0||U, 12| a @
0 0 0 0 0 0llu, 0 0
0 0 0 0 0 0fUs 0 0
Element?2
0 0 0 0 0 0 [y, 0
0 0 0 0 0 0 U, 0
2E 0 0 6/b® -3/b*> —6/b° -3/b*||U, _ 2
0 0 -3/b> 2/b 3/b° 1b ||U, @
0 0 —6/b° 3/b> 6/b° 3/b® ||U, @
0 0 -3/b> 1/b  3/b> 2/b ||U, @




FEA Beam Problem
@ @

® C ®
(1) (2) 3)
Global Assembled System
6/a° -3/a®> -6/a’ ~3/a? 0 0 [y, 6 2
2/a 3/a? 1/a 0 0 U, _a o
SE| 6/a°+6/b° 3/a*-3/b*> -6/a° -3/a’||U;| fa|6 3+ QP
2/a+2/b 3/a®> 1/a ||U,[ 12|a[ |QP+Q®
6/a® 3/a® ||U, 0 )
i 2/a ||Ug 0 2)
Boundary Conditions Matching Conditions
Up=wf? =0,U, =60 =0,Q"=Q =0 Q+Q®=0,Q¥ +Q¥ =0
Reduced System
6/a’>+6/b® 3/a*-3/b> -6/a°> -3/a’|[U, 6] [0
2 U 0
SE 2/a+2/b 3/a 1/a ) :_E a N
6/a> 3/a* ||U, 12 |0| |0
2/a ||U, 0 0

Solve System for Primary Unknowns U, ,U, ,U; ,U,

Nodal Forces Q; and Q, Can Then Be Determined




Special Features of Beam FEA

Analytical Solution Gives Analytical Solution Gives
Cubic Deflection Curve Quartic Deflection Curve

T

FEA Using Hermit Cubic Interpolation
Will Yield Results That Match Exactly
With Cubic Analytical Solutions



Truss Element

Generalization of Bar Element With Arbitrary Orientation

9

A y l

/\ Ivl ? Basic Element Equation (8= 0 case)
v | /UJ P; -

(k0 -k 0] (% [ -p;)
0O 0 0 0 ‘3’1'+ —4;
-k 0 kK O 4",' —i‘f’j>
000 o)) |-4]
Transformation for General Orientation
(¢ s 0 0] @y = [THd’y  {f} = T}
-s¢c 00 ‘
T] = T
0 0 ¢ s [k){d} = {fy =P [T} klTKa'} = {f}
_0 0 -s ]
s=sinO®, c=co0s0O
(2 s -* o5
Wl - mimm -k S5 S
-2 -5 & ¢
| ~cs -s2 s sz_




Frame Element

Generalization of Bar and Beam Element with Arbitrary Orientation

W1 eW2
9}/}\ U o }%\‘uz
P, — o——=>— P,
\]ﬁ) L (%L]/M
2
Ml
Vl V2
AE o _PE 0
L L
1261 6Bl _12El 6El |y (P
E K EE
6EI  4EI 6E1  2B1 ||[W] |
0 ke T =l
E L L POl
_AE 0 0 AE 0 0 U, P,
L L
) 126l 6Bl 126l _GEl Wl Qs
B c o |9 (Qu
) 6EZI 2B _6Ezl 4E1
i L L L L

Element Equation Can Then Be Rotated to Accommodate Arbitrary Orientation



Some Standard FEA References

Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, 1995.

Beer, G. and Watson, J.O., Introduction to Finite and Boundary Element Methods for Engineers, John Wiley, 1993
Bickford, W.B., A First Course in the Finite Element Method, Irwin, 1990.

Burnett, D.S., Finite Element Analysis, Addison-Wesley, 1987.

Chandrupatla, T.R. and Belegundu, A.D., Introduction to Finite Elements in Engineering, Prentice-Hall, 2002.
Cook, R.D., Malkus, D.S. and Plesha, M.E., Concepts and Applications of Finite Element Analysis, 3 Ed., John Wiley,
1989.

Desai, C.S., Elementary Finite Element Method, Prentice-Hall, 1979.

Fung, Y.C. and Tong, P., Classical and Computational Solid Mechanics, World Scientific, 2001.

Grandin, H., Fundamentals of the Finite Element Method, Macmillan, 1986.

Huebner, K.H., Thorton, E.A. and Byrom, T.G., The Finite Element Method for Engineers, 3/ Ed., John Wiley, 1994.
Knight, C.E., The Finite Element Method in Mechanical Design, PWS-KENT, 1993.

Logan, D.L., A First Course in the Finite Element Method, 2" Ed., PWS Engineering, 1992.

Moaveni, S., Finite Element Analysis — Theory and Application with ANSYS, 2" Ed., Pearson Education, 2003.
Pepper, D.W. and Heinrich, J.C., The Finite Element Method: Basic Concepts and Applications, Hemisphere, 1992.
Pao, Y.C., AFirst Course in Finite Element Analysis, Allyn and Bacon, 1986.

Rao, S.S., Finite Element Method in Engineering, 3™ Ed., Butterworth-Heinemann, 1998.

Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, 1993.

Ross, C.T.F., Finite Element Methods in Engineering Science, Prentice-Hall, 1993.

Stasa, F.L., Applied Finite Element Analysis for Engineers, Holt, Rinehart and Winston, 1985.

Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Fourth Edition, McGraw-Hill, 1977, 1989.



